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Abstract

We prove the following generalization of the Entropy Power Inequality:
h(Az) > h(AZ)

where h(-) denotes (joint-) differential-entropy, £ = 1 ...z, is a random vector with indepen-
dent components, £ = 1 ...%, is a Gaussian vector with independent components such that
h(z;) = h(z;), 1 = 1...n, and A is any matrix. This generalization of the entropy-power in-
equality is applied to show that a non-Gaussian vector with independent components becomes
“closer” to Gaussianity after a linear transformation, where the distance to Gaussianity is mea-
sured by the information divergence. Another application is a lower bound, greater than zero,
for the mutual-information between non overlapping spectral components of a non-Gaussian
white process. Finally, we describe a dual generalization of the Fisher Information Inequality.

Key Words: Entropy Power Inequality, Non-Gaussianity, Divergence, Fisher Information
Inequality.

*This research was supported in part by the Wolfson Research Awards administrated by the Israel Academy of
Science and Humanities, at Tel-Aviv University. This work was partially presented at the International Symposium
on Information Theory, San Antonio TX., January 1993



1 The Generalization of the Entropy Power Inequality

Consider the (joint-) differential-entropy h(Az), of a linear transformation y = Az, where z =

T1...Zn 18 a vector and

h(y) £ E{—log f(y)} (1)

where we assume that y has a density f(-). Throughout the manuscript logz = log, z and the
entropy is measured in bits. Assume that dim A = m' X n and RankA = m. In some cases, this

entropy is easily calculated or bounded:

1. A is an invertible matrix (i.e., m' = m = n). In this case the lineartransformation just scales

and shuffles z, thus the entropy is only shifted,
h(Az) = h(z) + log|A] ®)

where | - | denotes (absolute value of) determinant.

2. A does not have a full row-rank (i.e., m' > m). In this case there is a deterministic relation

between the components of y and thus

h(Az) = —co . (3)

3. z = z* is a Gaussian vector. The linear transformation A preserves the normality and so

h(Az*) = % log(2me| ARy A'|w) (4)

where R, is the covariance matrix of z* and AR, A? is the covariance matrix of y* = Az*.

Since for a given covariance, the Gaussian distribution maximizes the entropy, the expression

in (4) upper bounds the entropy of y = Az in the general case, i.e.,

h(Az) < h(Az") (5)

where z* is now a Gaussian vector with the same covariance matrix as .

4. In the above three cases £ was an arbitrary random vector. In what follows we restrict z to

have independent components. If in addition y is scalar, i.e., y = @121 + . .. + an Ty, then the



entropy-power inequality (EPI) can be used to lower bound its entropy. Specifically, by the
EPI (see e.g. [1], pp. 287),

P(y) =2 P(a121) + ... + Planzy) (6)

where P(y) = 2—71“32%(9) is the entropy-power of y. An equivalent form of the EPI [2] expresses
(6) directly in terms of the entropy as

where Z is a Gaussian vector with independent components such that h(zZ;) = h(z;),i=1...n

and @' = (a1,...a,). An explicit calculation of the entropy in the RHS of (7) yields

1 1 "

h(a'z) = 3 log 2me(a' Pa) = 2 log 2me() azp;) (8)
i=1

where P is the covariance matrix of Z, i.e., it is a diagonal matrix whose i-th diagonal element

is p; = 5--22@) = Var{z;}, and h(z;) is the entropy of ;. The inequalities (6) and (7)

become equalities iff z is Gaussian.

We generalize the lower bound (7) to the case where y may be a vector, and show below that
h(Az) > h(Az) for any A. Unlike what one may have expected, this inequality does not follow
by just using in (7) the vector form of the EPI instead of the regular EPI. To see that, recall the
vector form of the EPI (see e.g. [2])

hlug + ...+ up) > (il + ..+ 8y) = % log 2me (i P(m)) (9)
i=1

where u; € R™,4 = 1...n are independent random vectors and @; € R™ are independent Gaussian
vectors with (proportional) covariances R; = P(u;) - K, where K is any covariance matrix with a
unity determinant (e.g. K = I) and (the scalar) P(u;) is the entropy-power of the random vector
U,

1 _2p0
P(u) = %zmh(—) - (10)



Now, let b; ...b, be the columns of A. Then, by the vector form of the EPI (9),

h(Az) = h(w1by + Baby + ... + Taby) > h (218 + w2by + . + Zaby ) (11)

At that point, one would like to proceed by replacing the RHS of (11) with h(Z1b; + ...+ Z,b,) =
h(Az). However, this transition fails since for m > 2, h(x;b;) = —oo, or P(z;b;) = 0 (due to the
deterministic relation between the components). Thus, a straight-forward application of the vector
form of the EPI leads to the trivial lower bound h(Az) > —ooc.

Other simple attempts to get the desired generalization from the vector form of the EPI fail
as well. Nevertheless, using a different approach, based on a double induction over the matrix

dimensions, we prove:

Theorem 1 For any matriz A,
h(Az) > h(AZ) (12)

The detailed proof is provided in Appendix A. Note that the RHS of (12) can be specified
explicitly as h(AZ) = 2 10g(27re|APAt|%) where, as above, P is the covariance matrix of Z which
is a diagonal matrix whose i-th diagonal element is p; = ﬁ?h(wi), and m = RankA.

Equality in (12) holds in one of the following cases, which correspond to the three cases men-

tioned in the introduction:
1. z is Gaussian (z = ).

2. A is a non-singular square matrix (see (2)). More generally, we get equality in (12) if A
contains all-zero columns, corresponding to components of z that do not influence y, but

after these columns are removed A becomes a non-singular square matrix.
3. A does not have a full row-rank and so both sides of (12) equal —oco (see (3)).

In the i.i.d. case P = p- I, where p = ﬁle22h(w) is the entropy-power of each component of z,
and so (12) becomes

~h(Az) > h(z) + 5 log(| AA']). (13)

When |AA?| =1, e.g., in the case of orthonormal transformation, (13) is reduced to

L h(Az) > h(z). (14)



As the dimension of z becomes large it may represent samples of a white stochastic process. In this
case the matrix A represents linear transformation of that process. When A represents a filtering
operation, some projections of z are transferred with unity gain and the rest are filtered away,
and so |[AA!| = 1. Thus an interpretation of (14) is that after linear filtering the entropy (per
degree-of-freedom) of a white process is increased.

The new inequality (12) results, in general, tighter bounds than the standard vector form EPI.
Consider for example a vector z = Az + By where both z,y are independent vectors with n
independent components, and A, B are nonsingular n X n matrices. It is interesting to assess the
value of h(z) for evaluating the capacity of some additive noise channels. In this case the standard

EPI is applicable, leading to the bound
P(z) > P(Az) + P(By) = |AP,A"|'/" + |BP,B!|'/" (15)

where P(-) is the entropy power of a vector defined in (10) and P,, P, are diagonal matrices whose
elements are the entropy powers of the components of z and y respectively. Our generalization of

the EPI leads to the bound
P(z) > P(A% + Bj)) = |AP, A" + BP,B!|'/". (16)

By the Minkowski inequality (see e.g. Theorem 5 in [2]), the bound (16) is tighter than (15), with
equality iff AP, A" is proportional to BP,B".

2 Applications to Linear Transformations of a Vector with Inde-

pendent Components

2.1 Closeness to Normality after Transformation

It is well known that a Gaussian vector stays normal after linear transformations. It has also been
observed that a non-Gaussian vector with independent components becomes “closer” to normality
after passing through a linear transformation. The case of a non-Gaussian stochastic process whose
samples are statistically independent (e.g. a non-Gaussian white noise) that passes through a
linear system has drawn a special interest in the recent years in deconvolution problems. The

closeness to normality of the output in this case has been characterized elegantly in [3], and has



been used to derive techniques for deconvolving the effect of the linear system. In this section
we use the generalization of the EPI to show that indeed a non-Gaussian vector with independent
components becomes closer to normality, after a linear transformation, in a very specific sense where
closeness is measured by the divergence (or “relative entropy”, or “Kullback-Leibler distance”) from
Gaussianity.

We recall the definition of the divergence. Let y be an n-dimensional random vector, and let y*

be another vector. The divergence between these vectors is defined, (see e.g. [4] pp. 231)

D(y;y*) é/m fy(@)log %dg (17)

where fy(-), fy+(-) are the corresponding probability density functions, and the divergence is mea-
sured in bits. For any two p.d.f’s, the divergence is non-negative. The divergence from Gaussianity,
i.e. the case where y* is Gaussian with the same first and second order moments as y, can be ex-

pressed as

D(y;y*) = h(y*) —h(y) 20 (18)

and it is zero iff y is also Gaussian. If there is a deterministic linear dependency between the
components of y (e.g., when y is the output of a system that does not have a full rank) then neither
the integral in (17) nor the entropies in (18) are well defined, and the following more general

definition of the divergence is used (see [5], pp. 20):

Dlysy") = By{log ()} (19)

where F' and F* are the distributions of y and y*, % is the Radon-Nikodym derivative of the
corresponding distributions, and the expectation is taken with respect to y.

Using the generalization to the Entropy Power Inequality, derived in the previous section, we
provide below an upper bound for the divergence from Gaussianity of a linear transformation of
a vector £ = z1 ...z, with independent components. In stating this result we denote by z* a
Gaussian vector with independent components, such that Var{z;} =Var{z}}. Unlike the previous
lower bound for the entropy, this upper bound is not trivial even when the transformation does not

have a full rank.



Theorem 2 For any matriz A,

o 1. [|AR A!|w .
— . < — L S S— < Lo
D(Az; Az*) < 5 log <|AP$A‘5|# < lenla.}% D(z;; ;) (20)

where m = Rank A, Py is a diagonal matriz whose diagonal elements are {p;} the entropy powers
of the components of x and Ry is the diagonal covariance matriz of £* whose diagonal elements
are {02}, the powers of the components of .

Note that if the components of z are i.i.d., (20) is reduced to

LD(Az; Az") < Dia;a) (21)

where z is any component and equality holds if = is Gaussian (D(z;z*) = 0) or if A is invertible
(after all its zero columns, if any, are removed). This theorem follows straight-forwardly from
Theorem 1, and its detailed proof is given in Appendix B.

Theorem 2 can be used to show that an i.i.d. process becomes closer to normality, in information
divergence sense, after passing through a linear-time-invariant system. For this we consider the
limit, as n goes to infinity, of the normalized divergence per degree-of-freedom of n samples of
the output process. The inequality (21) is satisfied by the normalized divergence for any n and
so it is satisfied in the limit. The interpretation of inequality (21) in this case is that a white
process becomes “more Gaussian” after filtering, in the sense that its normalized divergence from
Gaussianity, per degree-of-freedom, decreases. Note that if the filter is invertible, the normalized
divergence of the entire output process does not change. Yet, the divergence from Gaussianity of a
finite number of samples becomes smaller, since these samples are obtained from the entire input
process by a non-invertible transformation.

Finally, it is interesting to note that Theorem 2 yields a stronger result than a straight-forward
application of the data processing theorem for the divergence. For example, when gz is i.i.d., the

data processing theorem for the divergence implies
D(Az; Az*) < D(z;z*) =n-D(z;z*). (22)

Since n > m = RankA, the bound (21) is tighter.



2.2 Mutual-Information between Orthogonal Projections of an Independent

Vector

A pair of orthogonal projections of uncorrelated Gaussian vector are independent and therefore the
mutual-information between them is zero. This may not be true, however, for non-Gaussian noise.
In this section we show that the projection of a non-Gaussian vector with independent components
into two subspaces that span the entire space, results in two vectors whose mutual information
is lower bounded away from zero. Note that since the mutual-information is invariant to the
representation, it is only a function of the pair of linear sub-spaces spanned by the projections.
Let x be a random variable, and let z be an n-dimensional vector of i.i.d. samples, distributed as
x. Let A; and Aj, be two matrices, each with n columns, where RankA; = r (r < n), RankAy, = n—r,
and the space spanned by the rows of A; is orthogonal to the space spanned by the rows of Aj. The
rows of A; and Ay, thus span the entire space. The projections are denoted Yy, = Az and Y, = Apx.
One motivation to consider the mutual information 1 (gl; Y h) comes from the following example.

Let X = [Xo,...,Xn—1]" be the DFT of z = [zo,...,7n_1]" i.e.
1 n—1 2y
Xp=— z:acme_377r m k=0,...,n—1,
\/ﬁmZO

where j = /—1. The random vector X represents the spectral content of the vector z. In general,
it is interesting to find the mutual information between mutually exclusive spectral components of
the i.i.d. vector z. For example, the mutual information I(Xy; X1,...,X,_1), i.e. the mutual infor-
mation between the DC-component and the rest of the spectral components, has been considered
in [6].

Define the divergence from Gaussianity of y, (normalized to bits-per-sample) as

1 . 1 «
Dy =-D(y;y;) = ;D(Alz; Aiz’). (23)

r

A similar definition can be made for Dy. Now, in some applications r is fixed, while n becomes
large, and so D; can be made arbitrarily small. For example, fix r = 1 and let A; be the DC-
component, i.e., y; = Xo = ﬁ >t ; zi. Then by the strong form of the central limit theorem of [7],
D; — 0 as n — oo. A projection A; for which D; — 0 as n — oo, is referred to as “asymptotically
Gaussian projection”.

The following theorem underbounds the mutual-information between Y, and Y, Per degree-of-



freedom (dimension) of y,:

Theorem 3 1
;I(Alg; Apz) > D(z;2%) — Dy (24)

The theorem is proved in Appendix C. Note that by Theorem 2 the RHS of (24) is positive,
bounded away from zero, unless z is Gaussian. Also, if A; is an asymptotically Gaussian projection,
the lower bound becomes the divergence from Gaussianity of z.

Returning to the example that motivated this problem, we have calculated explicitly the mutual
information between the DC-component and the rest of the spectral components for a uniformly
distributed i.i.d. vector. When the vector dimension n = 2, I(Xo; X1) = I(z¢ + 21520 — 71) =
log(£) = 0.44 bit. For dimension n = 3 the mutual information is computed numerically, using the

relation

Ty + 1+ T2 To + 21+ 22

I(Xo;X1,X2)21($o+:E1 + T30 — 3 , T1 3

> = 0.6 bit.

In both cases the mutual information is greater than D(z;; z}) = 0.254, the divergence between a
uniform distribution and a Gaussian distribution having the same variance.

Notice that Theorem 3 above provides a lower bound on the mutual information, whose main
properties are that it is greater than zero, and it depends on the divergence from Gaussianity of
the distribution of each sample, and on the dimension of A;, but it does not depend explicitly on
the projections themselves. However, the general problem of estimating the mutual-information
between orthogonal projections of a white vector (or process) is still open, especially, since from
the example above, the lower bound seems to be untight. A somewhat related subject is to find

the mutual-information between a subset and its complement in a given set of elements, treated in

[2].

3 A Generalization of the Fisher-Information-Inequality

The duality between the EPI and various information inequalities has been pointed out in [2]. One

example of such dual inequality is the Fisher-Information-Inequality (FII)

KX+Y) '>KX)"'+KY)™! (25)



where X and Y are independent random vectors, and K is the n xn dimensional Fisher-information-
matrix of an n-dimensional random vector having a differentiable density f, with respect to a

translation parameter, defined as

1
2
where Vf is the n-dimensional gradient vector of f (see [2]). The scalar Fisher-information is

defined as J = Ltr{K} = %E{%HV}‘HQ} The FII (25), whose proof is relatively simple, is

K:E{ Vf-Vft} (26)

actually used to prove the EPI (see [8] and [9]).
The generalized EPI and this duality motivated us to show the following generalization of the

FII:

Theorem 4 Let z = x1 ...z, be a vector with independent components having a (diagonal) Fisher
information matriz K. Then, for any matriz A

K(Az) ' > K(AD) ' = AK(z) 1 A* (27)

where & = %1 ... &y, is a Gaussian vector with independent components, such that J(&;) = Var{#;} 1 =
J(.’IIZ), 1=1...n.

Note that the matrix inequality (27) is in the sense that the difference matrix is positive semi-
definite. The detailed proof of this theorem is given in a TAU technical report, and here we sketch
its structure. Similarly to the derivation in [8], [9] and [10], where the basic FII was shown, we

show that

fy) [ (i)

where b; is the +th column of A, and the conditional expectation is over x; given y = Az. This

‘g} , for i=1...n (28)

equality can be written in a matrix form as

f(y) f(@) ‘E}' (29)

Using Cauchy-Schwarz inequality EWW?! > EW EW? it follows from (29) that

VI (VN . (Vi) V(z)' Vi@)\ (Vi)
4 (f(g) ) ( @) ) a=p{ 7@ ‘Q}E{ f(@) ‘Q}SE{( 7@ )( 7@ ) ‘g}'

Averaging (30) over y gives

A'K(y)A < K (). (31)



Finally, multiplying (31) from the left by (AK (z) ' A") ' AK(z) !, and multiplying from the right
by K(z) ' A*(AK(z)"'A?)~!, and taking the inverse we get (27). Note that the Fisher information
matrix of the Gaussian vector Az in (27) is given directly by its inverse covariance matrix.

As in Theorem 1, equality in (27) holds if z is Gaussian or if A is invertible. Note that in the
i.i.d. case K = J(z) - I, and if we further assume that A is orthonormal (i.e., AA* = I), we can
rewrite inequality (27) in a scalar form as J(Az) < J(z).

As in the standard EPI, one may hope that we can use the generalized FII to prove the gen-
eralized EPI, i.e. to prove Theorem 1. Indeed, as shown below, in the case where z is i.i.d., the
generalized EPI can be proved via the generalized FII. Specifically, we use an integral relation
between the divergence and the Fisher information given in [7] Lemma 1, following De-Bruijn’s

identity. In the vector case, this relation becomes

dt

D(y;y*) = /01 trace{RyK(gt) — I}Q_t

where y, = Vty++v1—ty* (D here is measured in nats).
Applying (32) to y = Az we get Ry = ARyA". From the FII (27), K(y,) = K(4z;) <

1

(AK(z;)"'AY)"". Now if z is ii.d., then the components of z;, are also i.i.d., R, = oI and

K(z;) = J(x¢) - I. Incorporating into (32), we get
* ! 2 dt *
D(Az; Ac*) < / (627 (@) = 1) - trace{T} 3, = mD (w3 2") (33)
0

where the second equality follows by applying (32) to the random variable z. Inequality (33) is
equivalent to (13) and (21), i.e., to the generalization of the EPT in the i.i.d. case.
It seems plausible that the derivation above can be extended to the general case. We study this

approach but at this point the proof of Theorem 1 via the double induction is still needed.
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Appendix A: Proof of Theorem 1

We prove (12) for a matrix A, whose number of rows is m = Rank A. The case where the number
of rows m' > RankA, i.e., A does not have a full row-rank, is trivial since both sides of (12) are
—o0 (see (3)).

The proof is by double induction over m and n. The induction boundary conditions are the line
m = 1 (any n) and the line m = n in the plain (m,n) € N2. In the case m = 1 the inequality holds
by the regular EPI since A is a row matrix. In the case m = n the matrix is invertible and so (12)
holds with equality. We show below that if (12) holds for any (m — 1) x (n — 1) and m X (n — 1)
matrices, then it also holds for any m X n matrix. This is the induction step. Figure 1 shows a
path in the plain N2 from the boundary lines to an arbitrary point (m,n), which is followed by
the induction steps to prove the theorem for any m x n matrix. Since m and n are arbitrary, the
theorem holds for any matrix, provided that the induction step is proved.

To prove the induction step, some matrix manipulations used in Gaussian elimination, are
needed. Denote by {a;;},i = 1...m, j = 1...n, the elements of the matrix A, and let Rank
A =m > 2. Suppose the last column of A is not zero. Otherwise, i.e. if a;, = 0 for all 4, then y
does not depend on 1z, and A is actually m x (n — 1) matrix for which the inequality holds by the
induction assumption. Now if a,,, = 0, permute a pair of rows of A and the pair of corresponding
components of y, so that after permutation a, ,, # 0. This permutation, if needed, does not affect
the entropy.

The next step is to use row operations and make the first (m — 1) elements of the last column
to be zero. This is possible since we assured above that a,,, # 0. Denote by A = TA the matrix

after the row operations, where the matrix T has the form

1 a1
1 0 a9
T= ' L =1 (34)
0
1

11



Observe that since |T'| = 1 the row operations do not change the entropy,
h(Az) = h(T~' Az) = h(Az) —log |T| = h(Ax). (35)

Define some sub-matrices of A, as follows

|0 |

| |

A~ | |

A= | =| B | b

|0 |

- - - |
i | amn |

where &,,, = (am1,---,@mn 1) is the last row of A without the last term, b, = (0,0,...,0, amn)*

is the last column of A, B is obtained by dropping the last column of A (dim B = m x (n—1)), A~
is obtained by dropping the last row of B (dimA~ = (m —1) x (n —1)) and 2~ = z1,...,Tp_1 IS
the vector z without the last component. Now the matrices A and A~ have a full row-rank since
they are obtained by row operations from the matrix A, which has a full row-rank. The matrix B,
however, may either have a full row-rank, if its last row, a,,, does not depend linearly on the other
rows (i.e., on A7), or a deficient rank, if its last row linearly depends on the other rows.

Note that all the components of Ag, with the exception of the last one, are independent of z,,.
Also observe that, by the induction assumption, both the matrix A~ (of size (m —1) x (n—1)) and
the matrix B (of size m x (n — 1)) satisfy (12), i.e., h(A"z~) > h(A Z") and h(Bz ) > h(BZ ).

To utilize the induction assumptions, we need to express the entropy Az in terms of entropies

associated with lower dimensional matrices, e.g. the entropy of A~z~. Using the chain rule,

h(Az) = h(f, .- 9m) = RlG1, -+ G 1) + WG, - G 1) (36)
and since 9, = al,z = ang_ + amnzn and (§1,...,9m-1) = A"z~, we can rewrite (36) as
h(Az) = (A" z7) + h(@,z™ + ampzn] A"2z7). (37)

Notice that am, 2, in the RHS of (37) is independent of both @z~ and the condition A~z~.

12



Suppose first that the last row of the matrix B linearly depends on the other rows. In this case

the term Qﬁng_ in (37) linearly depends on A~z~ and does not affect the entropy. Thus,

~

h(Az) = h(A7z") + h(am,n$n) =h(A7z") + h(zy) + log |am,n| . (38)

Utilizing the induction assumption, asserting h(A~z~) > h(A~Z ), and by (35)
h(Az) > h(A™E") + h(zn) + loglamn| = h(AZ) (39)

where the second equality follows by applying (38) to h(AzZ) and since h(z,) = h(Zy). The induction
step for this case is proved.

Consider now the second case where B has a full row-rank. Proceeding from (37), we use a
conditional version of the EPI (originally presented in [9], see also [1] pp. 289) to lower bound the
entropy of the sum of independent terms in the RHS of (37)

h(Az) > h(A z7) + %log (2%(@:”@—\,4—@—) + 22h<am,nwn>) . (40)
Since Bz~ is a concatenation of A~z~ and @ing_, we can use again the chain rule to get
o 1 _ _
h(Az) > h(A 2z ) + 3 log (22[17“(3E )—h(A7e)] afn,n22h(w")) . (41)

The RHS of (41) is clearly monotonically increasing with A(Bz™). Similarly, the function a(t) =
t+ %log(b2*“t + ¢), a,b,c > 0, has a positive derivative for all ¢, and so the RHS of (41) is also
monotonically increasing with h(A™ z ). Since by the induction assumption h(A "z~ ) > h(A Z7)

and h(Bz~) > h(Bz ), we can lower bound (41)

h(Az) > h(A"E7) + %log (22[h<Bi‘>—h(A‘i‘” + a,%z,n22h<zn>) : (42)

To complete the induction step, observe that the conditional version of the EPI used in the transition
from (37) to (40) holds with equality for the Gaussian vector Z and thus the RHS of (42) is h(AZ),

as desired. O
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Appendix B: Proof of Theorem 2

Assume, first, that A has a full row-rank, dim A = m x n. By Theorem 1,
~ m L
h(Az) > h(AZ) = 5} log(2me| APA"|m) (43)
where P is the diagonal covariance matrix of Z, whose diagonal elements are p; ...p,. Thus,

m tm
M(Az*) ~ h(Az) < h(Az") — h(AZ) = " log <%> . (44)

where h(Az*) = log(27re|AR$At\%) and R, is the diagonal covariance matrix of z* whose diag-

onal elements are o?...02 (the powers of the components of z). Using the identity (18) and the

fact that (Az)* = Az*, we get the first inequality in (20)

1 1 AR At|w
—D(Az; Az™) < - log M (45)
m 2 |APAt|m
Now, if the components of z are i.i.d., then R, = 0?-I, P =p- I and so,
1 1 o?
—D(Az; Az”) < ;log (;) = D(z;z7), (46)

which proves (21).
For the general case, as shown in Lemma 1 below,
AR, A|w 2
% < max % (47)
|APA"’|E =1..m p;
2
and the second inequality in (20) follows since D(z;; z}) = 5 log (%) Note that while the second
inequality in (20) is less tight than the first, it is independent of the transformation A.
Consider now the case where A does not have a full row-rank, i.e., Rank A = m is less then the
number of rows. Using the more general definition of the divergence given in (19), it follows that

if y, =Ty, ie., if y, linearly depends on y, then

D(y,y,3¥% ;) = Dy Ty 4" Ty") = Dy, y°)- (48)

Now, the vector (Az) can be separated into (A,z, A;z) where the m X n matrix A, has a full
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row-rank and the augmented part, A, z, linearly depends on A,z. Thus, by (48)
D(Az; Az™) = D(Aoz; Aoz”), (49)

and since 4, has a full row-rank, we can apply the derivation above to D(A,z; Aoz*) and prove the
theorem. O

In the proof we have used the following lemma:

Lemma 1 Let A and P be n X n positive, diagonal matrices, with diagonal elements A1 ...\, and
P1 - - - pn respectively, A;,p; > 0Vi. Then for any m X n matriz A,

|AAAY|m by
< max —

T > I (50)
|APAt|E 1=1...n p;
Proof: Define
A ax N
m = mMax ol (51)

Clearly, ry, - p; — A; > 0 for any 4 = 1...n, and so the matrix r,, - P — A is non-negative definite.
As a result, the matrix A(r,, - P — A)A? is non-negative definite for any choice of an m x n matrix

A. Thus, we may write the matrix inequality
Al - P—MNA">0 = 0<AAA"<r,-APA" . (52)

The inequality (52) implies a similar inequality for determinants (since | K + K| is greater or equal

both |K;| and |K3|, K1, Ko semi-definite matrices)
|AAAY| < |rm APAY| = (rpm)™|APA?| (53)
and (50) is proved. O

Appendix C: Proof of Theorem 3

Using the decomposition of the mutual information to entropies and by (18), one can express the

mutual-information I(y,;y,) in terms of divergence as:

Iy y,) = 1y 9,) — Dy y) — Dy ) + Dy 915 U)- (54)
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Examine now each term in the RHS of (39). Since orthogonality implies independence for

zero-mean Gaussian vectors,

I(y;;y,) =0 .

From (23), ’D(gl;g;‘) = rD;. By applying theorem 2 to A,
D(gh;g;l) < (n—r)D(z;z").

Finally,
Dy, ¥, 9;595) = D(y;y") = D(z;27) = nD(z;2%)

(55)

(57)

since A; and Aj compose together an invertible transformation which preserves the divergence.

Combining (23) and (54)-(57) yields the desired result. O
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